

機電頻率元件實驗室

Four-Point Probe Operation Manual For CDE ResMap

指導教授:蘇春熺

管理者:黄加閔

2008年5月

	標準操作程序		標準操作程序(續)		注意事項
1.	打開靠近四點探針儀側面	11.	若探針與待測樣品實際接	1.	破片規格:至少2公分見方
	(右手邊)的電源開闢,接著		觸時,透過 ChunkElev 對		以上
	按下電腦 Power ON 鍵		應的 Position 刻度為	2.	测量破片時,請勿將待測樣
	後,隨即進入主畫面		6.166 mm 時,此時點選		品置於狹縫之中,以避免探
2.	進入 CDE Resmap 畫面		Parameter Files 下 的		針損壞
	後,點選 Yes		Motion Coord 進入畫面	3.	接觸量測時,探針座與吸盤
3.	點選選單中的 Password →		後		的相對位置(以不互相碰撞
	Log ON → 鍵入 Shift +	12.	設定 ZChkContact (代表探		為原則)
	123 → OK		針與待測樣品的接觸深	4.	並確認四根探針有實際碰觸
4.	點選選單中的 Utilities →		度)與上述 ChunkElev		到待測樣品(實際上還是有
	Control 進入操作介面		中的 Position 刻度同為		露出部分探針),此時,千萬
5.	Cassette 操作介面沒有作		6.166 mm, 再點選下方的		不能調整 ChunkRot 否則探
	用(勿動)		Ok And Save \rightarrow Save as		針會因吸盤轉動產生的力矩
6.	ProbeArm : 調整探針懸臂		→ 4pMtCrd .prm(註:		而使探針斷裂(一根針約十
	的移動位置(Home: 驅動		由使用者決定檔名),以便		萬左右)
	探針懸臂馬達回到開機前		在下次量測時,將檔案叫	5.	當探針懸臂與待測樣品越靠
	的位置)		出來進行檢視所設定		近時,切記要將 ChunkElev
7.	ChunkRot: 調整吸盤(置		Position 刻度(每次都要執		上下的移動間距調小,以便
	放待測樣品的平台)的移		行)		進行微調,目的是使探針和
	動位置(Hone:同上)	13.	點選 GainSet 以進行量		樣品表面能實際碰觸到,並
8.	ChunkElev : 調整探針懸		測,隨後會出現如下圖所		避免造成探針突然朝下快速
	臂與吸盤的相對移動位置		示的參數值I-V(代表正常)		接觸樣品,造成機件損壞
	(Hone: 同上)	14.	測完後,點一下➡ → 按	6.	每次测量後<按一下 Probe
9.	上述的動作也可以透過點		一下 Probe Separate 以便		Separate, 目的是使原探針和
	選 (Probe To → R = 60		進行下一次量測		樣品能夠分離開來,避免因
	mm Th(角度) = 50 deg	15.	此時,可以移動待測樣		誤觸 ChunkRot 而造成
10.	將待測樣品置入吸盤		品,以便對不同的探針扎		探針的損壞
	(Chunk) 上 , 調 整		點進行量測,作為比較參	P.S:	若須執行 Repeatability 選項
	ChunkRot 和 ChunkElev		數之用		者, 需額外向 Super User 提
	至適當的位置				出要求,經考核過後,方可
					使用
1					

Four-Point Probe SOP

1 Four-Point Probe Theorem

片電阻(Sheet Resistance)是傳導性材料之重要特性之一,尤其是導電薄膜。 片電阻值會受到薄膜厚度、晶粒尺寸、合金比例與雜質濃度等因素影響,因此在 製程過程中,常常會仔細的監控片電阻值,以建立片電阻與晶片良率之間的關係。

薄片電阻為一定義之參數,一條導線之電阻可以表示成:

 $R = \rho(L/A)$

其中R 代表電阻,ρ為導體之電阻係數,L 為導線之長度,而A 為該導線之 截面積;若導線為一長方形之導線,寬度為W,厚度為t,長度為L,則電線的電 阻可寫成:

$R = (\rho L)/(Wt)$

若為長寬相等的正方形薄片導線,即L=W,則上列之等式可改寫成:

 $R = \rho/t$

其中掺雜矽的電阻率ρ主要由掺雜物的濃度來決定,而厚度t 主要由掺雜物 的接面深度來決定,由得知的離子能量、離子的種類和基片的材料就能估計接面 的深度,因此量測片電阻可以獲得有掺雜物濃度之資料。

四點探針是最常用來量測薄片電阻的工具,只要在其中兩個探針間加上固定 之電流,並同時量測另外兩個探針間之電壓差值,就可以計算出薄片電阻。一般 而言,探針之間隔S1=S2=S3=1mm,假設在薄膜面積無限大之狀況下,若電流I 加 在P1 與P4 之間,則薄片電阻為Rs=4.53 V/I,此處的V 為P2 與P3 之間的電 壓;若電流加在P1 與P3 之間,則薄片電阻Rs=5.75 V/I,V 為P2與P4 之間的 電壓。通常先進的工具都會進行四次量測,以程式依序進行上述兩種量測組態, 並改變每一種組態的電流方向來減少邊緣效應以得到更準確之數值。

由於四點探針的量測會造成晶圓表面之缺陷,因此只能用來量測測試晶圓以進行製程發展、鑑定和控制。進行量測時必須要有足夠的力量使探針能穿透較薄 之原生氧化層,使探針接觸到矽基片來進行量測。

四點探針檢測時,需注意下列條件:

1. 量測的四個接觸點位置必須在待測品的邊緣。

- 2. 黏接的接觸點面積必須非常小。
- 3. 待測品厚度必須非常均匀。

4. 待測品的表面必須是 singly connected。

2 Taking a Sample Test Measurement

2.1 打開靠近四點探針儀側面(右手邊)的電源開關,接著按下電腦 Power ON 鍵後,隨即進入主畫面。

2.2 測量破片時,請勿將待測樣品置於<u>狹縫之中</u>,以避免探針損壞,如下圖所示:

2.3 進入畫面後,點選 Yes。

2.4 點選選單中的 Password	→ Log ON	→ 鍵入	Shift + 123 -	→ OK •
---------------------	----------	------	---------------	---------------

			\frown	
CDE BesMan Automatic 4 Point Probe				
Operator	Engineer	<u>U</u> tilitico (<u>P</u> apoword	<u>O</u> ption

2.5 點選選單中的 Utilities → Control 進入操作介面。

_	- CDF ResMap A			Automatic 4 Point Probe	•	\$
<u>Operator</u>	Engineer	<u>U</u> tilitico	<u>P</u> assword	<u>O</u> ption		

2.6 點選選單中的 Utilities → Control 進入操作介面。

- CE	CDE_Demo		esMap Autor	matic 4 Point Probe	User: CDE_RsMp[3]	• \$
<u>O</u> perator	<u>E</u> ngineer	<u>U</u> tilities	<u>P</u> assword	<u>O</u> ption		
		<u>C</u> ontrol				
		Exit	5			

如下所示:

-	Controls		
GainSet Data(Single) Repeatability Data(Dual) Probe Press Probe Condition Rs vs. Time Rs vs. Pressure	Cycle Loader Vac. Ctl Blade Chuck Switch Status	Load from Cass Unload to Cass Cass to Robot Robot to Cass	SetProbe Contact Z Set Home @ Zero
Parameter Files PostProcess 4p_PostP.prm Probe 4pProbe.prm Motion Coord 4pMtCrd.prm Motor Param 4pMot.prm Motor Interlock 4pMotInt.prm Other DI 11110111 1111110 Temp 23.0 C	PlotIV-t PlotI V-I Case Case PlotI V-I Case PlotI V-I Case PlotI V-I Case Case Case	ssette Position -0.199slt 250 T lome Hotor Motor Motor Motor Probe Contact Motor Probe Separate Hotor Hotor	ProbeArm Position 12.50 -271.98mm 2.50 -271.98mm 2.50 -271.98mm 2.50 -271.98mm 2.50 -271.98mm 12.50 -271.98mm 10.00 -119.97deg 2.50 -270.97deg 2.50 -270.97

Cassette 操作介面沒有作用(勿動)。

ProbeArm: 調整探針懸臂的移動位置

Position:調整懸臂前進與後退(透過左右箭頭)(上下箭頭)則是移動的間距,以便進行微調

Home:驅動探針懸臂馬達回到開機前的位置

ChunkRot:調整吸盤(置放待測樣品的平台)的移動位置 Position:調整吸盤的位置(R 為逆時針旋轉,T 為順時針) (上下箭頭)則是移動的間距,以便進行微調 Home:驅動吸盤馬達回到原位置

ChunkElev:調整探針懸臂與吸盤的相對移動位置 Position:調整吸盤向上與向下移動(控制升降) (上下箭頭)則是移動的間距,以便進行微調 Home:驅動探針懸臂馬達回到原位置 舉例:上述的動作也可以透過點選 (Probe To → R = 60 mm Th(角度) = 50 deg → OK) 來加以調整探針與吸盤的相對位置(以不互相碰撞為原則)。如下圖所示:

※上述為量測破片時,所設定的參考值,也可依照使用者喜好來加以設定。

將待測樣品置入吸盤(Chunk)上,調整 ChunkRot 和 ChunkElev 至適當的位置,並確認四根探針有實際碰觸到待測樣品(實際上還是有露出部分探針),此時,千萬不能調整 ChunkRot 否則探針會因吸盤轉動產生的力矩而使探針斷裂。

※ 當探針懸臂與待測樣品越靠近時,切記要將 ChunkElev 上下的移動間距調 小,以便進行微調,目的是使探針和樣品表面能實際碰觸到,並避免造成探針突 然朝下快速接觸樣品,造成機件損壞。 舉例:若探針與待測樣品實際接觸時,透過 ChunkElev 對應的 Position 刻度為 6.166 mm 時,此時點選 Parameter Files 下的 <u>Motion Coord</u> 進入畫面後。

۲	Parameter Files	
	PostPiecess	4p_PostP.prm
	Probe	4pProbe.prm
$\left(\right)$	Motion Coord	4pMtCrd.prm
	Motor Param	4pMot.prm
	Motor Interlock	4pMotInt.prm

CDE Motion Coordinates Parameters
ProbeRest -125.
RbtClearCas 110. RbtInCas 240. RbtAtRest -118. RbtInChuck 0.
ZChkRest 13.5 ZChkBlade 0.
ZChkSeparate 9.166 ZChkContact 6.166 ZChkContactSlow 0.3
ZChkBladeWaferDn -1.
ZCasBladeWaferDn -0.2 ZCasBladeWaferUp 0.2
4pRobotMotNum 2. 4pZRobotMotNum 3. DistRobotToProbe 155.
dThFlatAngle 0. PosDrNegRadiusPref -1.
UseBladeVacCtl 🛛 HasCoverSwitch 🗌 CASSETTE Param: TopSlot#: 25 UseChuckVacCtl 🖾 HasCasPrsn 🗌 🖓 BottomSlot#: 1 HasPodLock 🗌 HasWfrLocSnsr 🖾
OK And Save) Read Coord. File Cancel

設定 ZChkContact (代表探針與待測樣品的接觸深度)與上述 ChunkElev 中的 Position 刻度同為 6.166 mm,再點選下方的 Ok And Save → Save as → 4pMtCrd .prm(註: 一律設定為 Q),以便在下次量測時,將檔案叫出來 進行檢視所設定 Position 刻度。

(※註:上述條件為限定每次待測樣品的厚度均為一致時才適用)

接下來,按一下 Probe Separate ,目的是使原探針和樣品能夠分離開來,避免 因誤觸 ChunkRot 而造成探針的損壞。

PrbWfrCmd: F1=run Gain data Data prbTo Park F6=Plt	: CursrKys=JogMot
◆CntrPlt ◆3DPlt ◆DiamPlt ◆HstoPlt F9=ProbeCondm	n ♠F9=Repeatabltut Calib calStd
F10=PbCfg ♠PbPrm F7=PrbPrs ▲F7=RsVsPrs ♠F7=dTime	: ▲AutoOrtGain 🚽 🗣=Alt+ ▲=Ctrl+
A:#d=1357 R= 34.89061 B:#d=1349 R'= 34.95946 △=-0	0.0986% Rs= 35.09635Ω∕©
#dat=1357	n= 0.765 Rs= 34.8931Ω∕⊡
Rref set to [6] =18075000 IoutAI=752	VinA1 <u>58-10001-8</u>
IdrvPerf=A V_AI_Zero=2045	
Rref set to [6] =18075000 JoutAI=749	f in AIEG= 100]=-1
Rref set to $[5] = 972392$ [loutAl=745]	VinAI[G= 100]=0
Ref set to $[4] = 102327$ [outAl=745]	VinAILG= 100J=4
Rref set to $[3] = 10202.9$ [outAl=74]	VinAILG= 100J=55
kref set to [2] = 1005.81 $foutHI=703$	VINHILG= 100J=536
Ontimize Gain bu Matrixing: Bref= 1005.81. UGain=1	00 Bs= 34.888 Merit=21.39:
100.320: 10 34.703 13.83 100 34.932 0.	AZ 993 34.244 A.AA
1005.81: 10 34.851 1.65 100 34.888 21.	39 993 34,939 0.01
10202.9: 10 38.055 0.07 100 34.869 2.	92 993 34.917 13.41
Rref set to [2] = 1005.81 IoutAI=782	VinAI[G= 993]=2050
CasElvMoto -0.220	ProbeConf ig:A
Rrf 1005.8 GnV=100 IDPf=A #d=1357 RI=3912 RV=2997	I,Vmx 4.748 36.57 Mrt 20.64
河口谷、毗照 一回十八人之回回 上 山 一 D	abo Comanata NAACT -
则元俊, 新进一下 圓 中的 紅巴 圓 🖉 一 子 PI	obe Separate 以便進行下一次
告 测	
∼ [¥]	
(🗕) CDE ResMap Automatic 4 P	oint Probe 🔹 🔹

點選 GainSet 以進行量測,隨後會出現如下圖所示的參數值(代表正常)

此時,可以移動待測樣品,以便對不同的探針扎點進行量測,作為比較參數之用 (附註:探針和樣品間的深度會影響最後的測試結果)

Operator Engineer Utilities Password Option

或是執行 Repeatability → 點選 Static (靜態量測) 則 dTh (微角度) 需設定為 零,並鍵入一開始所設定的 R = 60 mm , Th(角度) = 50 deg ,以針對某一待 測點進行單點多次量測,一般而言,量測次數是設定為 5 次,依使用者而定,其 中 ProbeCfg 設為"1"時,為量測塊電阻,設為"2"時,為量測片電阻,至於點 選 Dynamic (動態量測) 則需設定 dTh (微角度)值,其動作模式為測完一點後, 探針旋轉一個微角度,再對樣品進行量測,此動作可能會使探針扎到樣品邊緣(若 待測樣品不夠大時),使探針斷裂,故在此強調不建議使用。

2.8 再點選 Utilities → Exit → 結束執行程式

2.9 關掉四點探針開關,再將電腦關機,然後關掉延長線上的總開關,並確實填 寫使用紀錄薄後即可離開。

3 Experiment

3.1 於材料分析上之應用

用四點探針法測量電阻率,可避免探針與半導體間的誤差,是測量電阻率或 sheet resistance最常用的方法,它既可用來量測塊狀物質(晶片厚度遠大於電流 擴散深度)也可用之於薄膜(晶片厚度遠小於電流擴散深度)。因為矽的電阻與 雜質濃度很有關係,所以用四點探針測量電阻可為雜質濃度提供有用的訊息。可 搭配各種量測儀器,利用四點探針原理量測電面電阻值/電阻系數

量測材質: Si、ZnO、CNT及Tin等其它材料

量测尺寸: 可需1.5平方公分以上

3.2 Experiment Result Sheet

試片種類			
平台高度			
1			
2			
3			
4			
5			
6			
7			
8			
9			
10			
平均值			