

機電頻率元件實驗室

Four-Point Probe Operation Manual For CDE ResMap

指導教授:蘇春熺

管理者: 黄加閔

2008年5月

Four-Point Probe SOP

		標準操作程序		標準操作程序(續)		注意事項
	1.	打開靠近四點探針儀側面	11.	若探針與待測樣品實際接	1.	破片規格: 至少2公分見方
		(右手邊)的電源開關,接著		觸時,透過 ChunkElev 對		以上
		按下電腦 Power ON 鍵		應的 Position 刻度為	2.	測量破片時,請勿將待測樣
		後,隨即進入主畫面		6.166 mm 時,此時點選		品置於狹縫之中,以避免探
	2.	進入 CDE Resmap 畫面		Parameter Files 下 的		針損壞
		後,點選 Yes		Motion Coord 進入畫面	3.	接觸量測時,探針座與吸盤
	3.	點選選單中的 Password →		後		的相對位置(以不互相碰撞
		Log ON → 鍵入 Shift +	12.	設定 ZChkContact (代表探		為原則)
		123 → OK		針與待測樣品的接觸深	4.	並確認四根探針有實際碰觸
	4.	點選選單中的 Utilities →		度)與上述 ChunkElev		到待測樣品(實際上還是有
		Control 進入操作介面		中的 Position 刻度同為		露出部分探針),此時,千萬
	5.	Cassette 操作介面沒有作		6.166 mm, 再點選下方的		不能調整 ChunkRot 否則探
		用(勿動)		Ok And Save → Save as		針會因吸盤轉動產生的力矩
	6.	ProbeArm : 調整探針懸臂		→ 4pMtCrd□.prm(註:□		而使探針斷裂(一根針約十
		的移動位置(Home:驅動		由使用者決定檔名),以便		萬左右)
		探針懸臂馬達回到開機前		在下次量測時,將檔案叫	5.	當探針懸臂與待測樣品越靠
		的位置)		出來進行檢視所設定		近時,切記要將 ChunkElev
	7.	ChunkRot:調整吸盤(置		Position 刻度(每次都要執		上下的移動間距調小,以便
		放待測樣品的平台)的移		行)		進行微調,目的是使探針和
		動位置(Hone:同上)	13.	點選 GainSet 以進行量		樣品表面能實際碰觸到,並
	8.	ChunkElev : 調整探針懸		測,隨後會出現如下圖所		避免造成探針突然朝下快速
		臂與吸盤的相對移動位置		示的參數值I-V (代表正常)		接觸樣品,造成機件損壞
		(Hone:同上)	14.	測完後,點一下■ → 按	6.	每次測量後<按一下 Probe
	9.	上述的動作也可以透過點		一下 Probe Separate 以便		Separate, 目的是使原探針和
		選 (Probe To → R = 60		進行下一次量測		樣品能夠分離開來,避免因
		mm Th(角度) = 50 deg	15.	此時,可以移動待測樣		誤觸 ChunkRot 而造成
	10.	將待測樣品置入吸盤		品,以便對不同的探針扎		探針的損壞
		(Chunk) 上 , 調 整		點進行量測,作為比較參	P.S:	若須執行 Repeatability 選項
		ChunkRot 和 ChunkElev		數之用		者,需額外向 Super User 提
		至適當的位置				出要求,經考核過後,方可
						使用
- 1			Ì		Ì	

1 Four-Point Probe Theorem

片電阻(Sheet Resistance)是傳導性材料之重要特性之一,尤其是導電薄膜。 片電阻值會受到薄膜厚度、晶粒尺寸、合金比例與雜質濃度等因素影響,因此在 製程過程中,常常會仔細的監控片電阻值,以建立片電阻與晶片良率之間的關係。

薄片電阻為一定義之參數,一條導線之電阻可以表示成:

$$R = \rho(L/A)$$

其中R 代表電阻,ρ為導體之電阻係數,L 為導線之長度,而A 為該導線之 截面積;若導線為一長方形之導線,寬度為W,厚度為t,長度為L,則電線的電 阻可寫成:

$$R = (\rho L)/(Wt)$$

若為長寬相等的正方形薄片導線,即L=W,則上列之等式可改寫成:

$$R = \rho/t$$

其中摻雜矽的電阻率ρ主要由摻雜物的濃度來決定,而厚度t 主要由摻雜物的接面深度來決定,由得知的離子能量、離子的種類和基片的材料就能估計接面的深度,因此量測片電阻可以獲得有摻雜物濃度之資料。

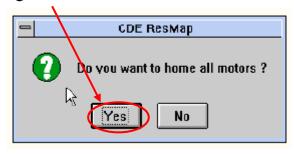
四點探針是最常用來量測薄片電阻的工具,只要在其中兩個探針間加上固定之電流,並同時量測另外兩個探針間之電壓差值,就可以計算出薄片電阻。一般而言,探針之間隔S1=S2=S3=1mm,假設在薄膜面積無限大之狀況下,若電流I加在P1 與P4 之間,則薄片電阻為Rs=4.53 V/I,此處的V 為P2 與P3 之間的電壓;若電流加在P1 與P3 之間,則薄片電阻Rs=5.75 V/I,V 為P2與P4 之間的電壓。通常先進的工具都會進行四次量測,以程式依序進行上述兩種量測組態,並改變每一種組態的電流方向來減少邊緣效應以得到更準確之數值。

由於四點探針的量測會造成晶圓表面之缺陷,因此只能用來量測測試晶圓以進行製程發展、鑑定和控制。進行量測時必須要有足夠的力量使探針能穿透較薄之原生氧化層,使探針接觸到矽基片來進行量測。

四點探針檢測時,需注意下列條件:

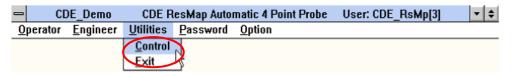
- 1. 量測的四個接觸點位置必須在待測品的邊緣。
- 2. 黏接的接觸點面積必須非常小。
- 3. 待測品厚度必須非常均勻。
- 4. 待測品的表面必須是 singly connected。

2 Taking a Sample Test Measurement

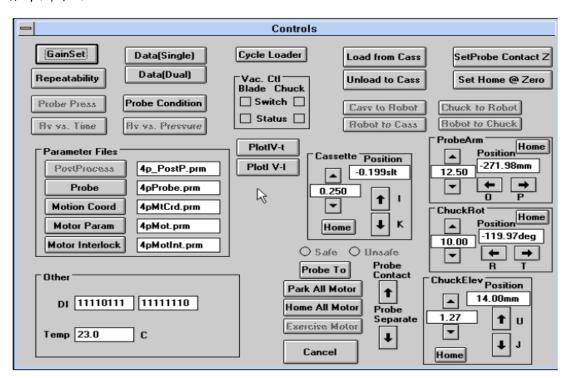

2.1 打開靠近四點探針儀側面(右手邊)的電源開關,接著按下電腦 Power ON 鍵後,隨即進入主畫面。

2.2 測量破片時,請勿將待測樣品置於狹縫之中,以避免探針損壞,如下圖所示:

2.3 進入畫面後,點選 Yes。


2.4 點選選單中的 Password → Log ON → 鍵入 Shift + 123 → OK。

				\			
_	CDE ResMan Automatic 4 Point Probe						\$ j
<u>Operator</u>	<u>E</u> ngineer	<u>U</u> tilitico	Papoword	<u>O</u> ption			_
							•


2.5 點選選單中的 Utilities → Control 進入操作介面。

—	CDE ResMap Automatic 4 Point Probe					
<u>O</u> perator	<u>E</u> ngineer	<u>U</u> tilitico	Password	<u>O</u> ption		

2.6 點選選單中的 Utilities → Control 進入操作介面。

如下所示:

Cassette 操作介面沒有作用(勿動)。

ProbeArm: 調整探針懸臂的移動位置

Position:調整懸臂前進與後退(透過左右箭頭)(上下箭頭)則是移動的間距,以便

進行微調

Home:驅動探針懸臂馬達回到開機前的位置

ChunkRot:調整吸盤(置放待測樣品的平台)的移動位置

Position:調整吸盤的位置(R 為逆時針旋轉, T 為順時針)

(上下箭頭)則是移動的間距,以便進行微調

Home:驅動吸盤馬達回到原位置

ChunkElev:調整探針懸臂與吸盤的相對移動位置

Position:調整吸盤向上與向下移動(控制升降)

(上下箭頭)則是移動的間距,以便進行微調

Home:驅動探針懸臂馬達回到原位置

舉例:上述的動作也可以透過點選 (Probe To → R = 60 mm Th(角度) = 50 deg → OK) 來加以調整探針與吸盤的相對位置(以不互相碰撞為原則)。如下圖所示:

※上述為量測破片時,所設定的參考值,也可依照使用者喜好來加以設定。

將待測樣品置入吸盤(Chunk)上,調整 ChunkRot 和 ChunkElev 至適當的位置,並確認四根探針有實際碰觸到待測樣品(實際上還是有露出部分探針),此時,千萬不能調整 ChunkRot 否則探針會因吸盤轉動產生的力矩而使探針斷裂。

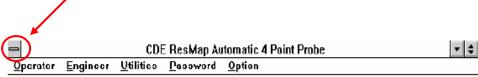
※ 當探針懸臂與待測樣品越靠近時,切記要將 Chunk Elev 上下的移動間距調小,以便進行微調,目的是使探針和樣品表面能實際碰觸到,並避免造成探針突然朝下快速接觸樣品,造成機件損壞。

舉例:若探針與待測樣品實際接觸時,透過 ChunkElev 對應的 Position 刻度為 6.166 mm 時,此時點選 Parameter Files 下的 <u>Motion Coord</u> 進入畫面後。

۲ı	Parameter Files —			
	PosProcess	4p_PostP.prm		
	Probe	4pProbe.prm		
	Motion Coord	4pMtCrd.prm		
	Motor Param	4pMot.prm		
	Motor Interlock	4pMotInt.prm		

CDE Motion Coordinates Parameters						
ProbeRest -125.						
RbtClearCas 110. RbtInCas 240. RbtAtRest -118. RbtInChuck 0.						
ZChkRest 13.5 ZChkBlade 0.						
ZChkSeparate 9.166 ZChkContact 6.166 ZChkContactSlow 0.3						
ZChkBladeWaferDn -1.						
ZCasBladeWaferUp 0.2						
4pRobotMotNum 2. 4pZRobotMotNum 3. DistRobotToProbe 155.						
dThFlatAngle 0. PosDrNegRadiusPref -1.						
UseBladeVacCtl HasCoverSwitch UseCASSETTE Param: TopSlot#: 25 UseChuckVacCtl HasCasPrsn HasPodLock HasWfrLocSnsr HasPodLock HasWfrLocSnsr						
Read Coord. File Cancel						

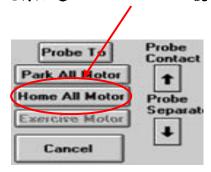
設定 ZChkContact (代表探針與待測樣品的接觸深度)與上述 ChunkElev 中的 Position 刻度同為 6.166 mm, 再點選下方的 Ok And Save → Save as → 4pMtCrd .prm(註: 一律設定為 Q),以便在下次量測時, 將檔案叫出來 進行檢視所設定 Position 刻度。

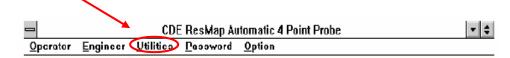

(※註:上述條件為限定每次待測樣品的厚度均為一致時才適用)

接下來,按一下 Probe Separate ,目的是使原探針和樣品能夠分離開來,避免 因誤觸 ChunkRot 而造成探針的損壞。

點選 GainSet 以進行量測,隨後會出現如下圖所示的參數值(代表正常)

```
A:#d=1357 R= 34.89061 B:#d=1349 R'= 34.95946 \triangle=-0.0986% Rs= 35.09635\Omega/\square#dat=1357 Roio=2716 2996 3910 Xq=1.9 Mrt= 21.639 m= 0.765 Rs= 34.8931\Omega/\square
                                       IoutAI=752
Rref set to [6] =18075000
                                                                VinAi
IdrvPerf=A V_AI_Zero=2045
 Rref set to [6] =18075000
                                        JoutAI=749
                                                                 inAI[G= 100]=-1
 Rref set to [5] = 972392
                                                                VinAI[G= 100]=0
                                        IoutAI=745
 Rref set to [4] =
                       102327
                                       IoutAI=745
                                                                VinAI[G= 100]=4
 Rref set to [3] = 10202.9
                                                                VinAI[G= 100]=55
                                        IoutAI=741
 Rref set to [2] = 1005.81
                                        YoutAI=703
                                                                VinAI[G= 100]=536
Optimize Gain by Matrixing: Rref= 1005.81, VGain=100
                                                               Rs = 34.888
                                                                            Merit=21.39:
                 10 34.703 13.83
                                        100 34.932
                                                                 993 34.244
   100.320:
                                                      0.02
                                                                                 0.00
                                        100 34.888
100 34.869
                                                                 993 34.939
993 34.917
   1005.81:
                 10 34.851
                               1.65
                                                       21.39
                                                                                 0.01
   10202.9:
                 10 38.055
                               0.07
                                                        2.92
                                                                               13.41
                                                                VinAI[G= 993]=2050
 Rref set to [2] = 1005.81
                                        IoutAI=782
CasEluMoto -0.220
                                                                            ProbeConfig:A
                      0.250
Rrf 1005.8 GnV=100 IDPf=A #d=1357 RI=3912 RV=2997 I,Vmx 4.748 36.57 Mrt 20.64
```


測完後,點選一下圖中的紅色圓圈 → 按一下 Probe Separate 以便進行下一次 量測


此時,可以移動待測樣品,以便對不同的探針扎點進行量測,作為比較參數之用 (附註:探針和樣品間的深度會影響最後的測試結果)

或是執行 Repeatability \rightarrow 點選 Static (靜態量測) 則 dTh (微角度) 需設定為零,並鍵入一開始所設定的 R = 60 mm , Th(角度) = 50 deg ,以針對某一待測點進行單點多次量測,一般而言,量測次數是設定為 5 次,依使用者而定,其中 ProbeCfg 設為"1"時,為量測塊電阻,設為"2"時,為量測片電阻,至於點選 Dynamic (動態量測) 則需設定 dTh (微角度)值,其動作模式為測完一點後,探針旋轉一個微角度,再對樣品進行量測,此動作可能會使探針扎到樣品邊緣(若待測樣品不夠大時),使探針斷裂,故在此強調不建議使用。

2.7 待所有的量測結束後,記得點選 Home All Motor 後

2.8 再點選 Utilities → Exit → 結束執行程式

2.9 關掉四點探針開關,再將電腦關機,然後關掉延長線上的總開關,並確實填寫使用紀錄簿後即可離開。

3 Experiment

3.1 於材料分析上之應用

用四點探針法測量電阻率,可避免探針與半導體間的誤差,是測量電阻率或 sheet resistance最常用的方法,它既可用來量測塊狀物質(晶片厚度遠大於電流 擴散深度)也可用之於薄膜(晶片厚度遠小於電流擴散深度)。因為矽的電阻與 雜質濃度很有關係,所以用四點探針測量電阻可為雜質濃度提供有用的訊息。可 搭配各種量測儀器,利用四點探針原理量測電面電阻值/電阻系數

量測材質: Si、ZnO、CNT及Tin等其它材料

量測尺寸: 可需1.5平方公分以上

3.2 Experiment Result Sheet

coz zaperi			
試片種類			
平台高度			
1			
2			
3			
4			
5			
6			
7			
8			
9			
10			
平均值			